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values of the wedge angle a 

CL, deg.= 190 210 230 250 270 290 310 330 350 
B, deg.= 50 53 60 66 70 SO 87 94 105 

Note. It was pointed out by V.K. Vostrov that for Gf (-l/J of /3/ the factor 
(1/5sin a cos a/Z)-' 

J/'Z 
should be multiplied by the inverse expression 1/y : t1 sin c( cos a/3. The numerical 

factors in (4.9) and (4.12) will now become 0.058 and 0.28 respectively (compared with the 
previous 0.046 and 0.22). 
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ON A STAR-LIKE SYSTEM OF PROPAGATING DISLOCATION DISCONTINUITIES* 

A.S. BYKOVTSEV and 2H.S. TAVBAEV 

An antiplane dynamic problem of a system of dislocation discontinuities 
propagating from the origin of coordinates and forming a star-like structure 
is considered. A displacement field is obtained and specific features of 
seismic radiation in the far zone are studied. 

Let zn dislocation discontinuities with uniform angular distribution (Fig.1) begin to 
propagate at the initial instant t= 0 from the origin of a Cartesian system of coordinates 

Gxy, with constant velocity, in an isotropic elastic medium. We define the discontinuity 
kinematically, i.e. we specify at each point of the plane of discontinuity the magnitude and 
direction of the displacement jump vector at the discontinuity, depending on the coordinates 
and time. As was shown in /l-6/, the kinematic description of the discontinuities shows in 
many cases a number of preferences as compared with the dynamic method whereby the forces are 
defined at the discontinuity. An analogous problem for the cracks using the dynamic method 
of describing the discontinuities was studied in /7/. 

We shall assume that every single dislocation discont- 
inuity is described by a symmetric (about the plane of 
discontinuity) homogeneous function of zero dimension f(pit). 
We denote by (r,, and (ryr the stress tensor components and 
by u) the unique non-zero displacement vector component 
satisfying the wave equation 

where P$'P are polar coordinates and c is the velocity of 
transverse waves. The boundary conditions are 

[ml = f (P& Pa vt 
[w] = 0. 

p,"t)~=O,$; n=1,2,3... (2) 

Fig.1 
Thus we must find a solution of problem (l), (2) belonging to the class of selfsimilarproblems 

with the selfsimilarity index (0,O). We use the Smirnov-Sobolev method /3/ of the functionally 
invariant solutions, and the general approach employed in solving such problems /9/, enabling 
us to reduce the selfsimilar problems of the dynamic theory of elasticity to the boudary 

value problems of the theory of analytic functions. 
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The general solutionof problem (l), (2) can be written in terms of the analytic function 
W of complex variable 

a2 
w = Re w (2). oxz = p Re W’ (z& ( byz = p Re iv’ (2) x 

Since the problem is symmetrical, we shall restrict ourselves to considering the sector 
O<P<CC, ogcpgnln. It should be noted that, depending on the direction of the displacement 
jump at the discontinuity, two different types of deformation are possible within the sector 

0 < q < n/n. In the first case we shall have "torsion of the angle" when the displacement will 
have different signs at m=O and cp= x/n, and in the second case we shall have "bending of 
the angle" in which case the signs will be the same. 

Taking into account the selfsimilarity of the problem and the properties 
ally invariant solutions /8, 9/, we can reduce the equation of motion and the 
ditions, in order to obtain w, to the form 

of the function= 
boundary con- 

(4) 

(5) 

R= 1-m 
I’ 

, y=T “) 
The sector Ogcpdz/n of the circle of infinite radius will now become the sector 0 5 cp < nln 
of the unit circle, andthe coordinates of the complex plane z, will be connected with the polar 
coordinates by the relation 

z1 = rl+, q1 = cp 

Using the conformal transformation 

z = 2 [zl" + I*-")-' 

we map the interior of the sector Ogcp<n/n of the unit circle onto the upper half-plane of 
the region 2. The ends of the discontinuities moving outwards become the points kzl where 
2, = 2 [R" + El-V-', The modulus and argument of the complex variable z is expressed in terms of 

P and cp as follows: 

izI= 
2rln[(rr + 1)*cos'ncp+ (i -r~")'sin'ncp] VI 

r:"+2r~~c0622ncp+l 

Argz = arc@ 
(1 - r;fy tg "'p 

r;"+ 1 

Then we can write the boundary conditions (5) in the form 

Re W (2) = '/,f, IRezI<z,, Imr= 0 (6) 
Re W(z) = 0, 1 Re z (> ~1. Imr=O 

The solution of the boundary value problem (6) can be written in terms of the Schwartz integral 
/lo/ as follows: 

Fig.2 
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Xf 

s f (t) dt 
t-_z + ice 

Knowing the function W(Z), we can use (3) to write the stress and displacement components over 
the whole region. 

Let us consider in more detail the case when f (p/t)= b = comt. In this case, using (7) we 
obtain the following expressions for the solution function w (2): 

22 - Z,Z 
1"(Z)=+-F_ (torsion of the angle) (8) 

(bending of the angle) (9) 

Let us analyze the dynamic displacement field for the case of bending of the angle. 
Substituting (9) into (3) and separating the real and imaginary parts, we obtain the follow- 
ing expressions for the displacement field: 

"(p,Ip,t) = -&arctg 
2pknksinngr 

mkacouPncp + p~*sin*np -a a k 
pk = rl* (1 - Q"), mb = R” (Q” + 1) 

nk = R” (rl”’ + Zr? cos 2no + i)(R=n + I)-1 

For the'first entry of the wave to the observer point, i.e. as r,--1, we obtain the following 
near-frontal asymptotics: 

4nRn (Ran+ 1)sinnp ct 
(Ran+ i)*- 4R'"cos'ncp p-- ' 

(10) 

The analysis of the near-frontal asymptotics is given much attention in connection with the 
study of the direction in which the seismic energy radiates, the energy originating at tect- 
onic earthquake foci and connected with the formation and rapid growth of the shear dis- 
continuities within the earth crust. Fig.2 shows the diagrams of directions of radiated 
seismic energy caused by a system of 2n shear discontinuities propagating outwards for n=l,?,3. 
Every point in these diagrams is defined by a radius vector whose modulus is proportional to 
the magnitude of the displacement at that point, and the direction coincides with the direc- 
tion from the centre of the system of the discontinuities towards the point in question. The 
solid lines represent the parts of the space in which the displacements have positive signs, 
and the dashed lines those with negative sign (since we have symmetry with respect to the 
vertical, only the right hand sides of thediagrams are shown for n=1,3 ). We see that the 
magnitude of the displacements increases as the velocity of propagation of the discontinuities 
increases (lines 1, 2, 3 have the corresponding values of y=O.4;0.6; 0.9 ). The general pattern 
of directions is however preserved. The number of nodal planes from which there are no dis- 
placements and during the passage through which the displacements change their sign, is equal 
to n, and the nodal planes themselves coincide with the planes of discontinuity. In the case 
of n=2 the diagram of radiation directions shows a clearcut distribution of signs over the 
quadrants analogous to that observed when analyzing the actual seismograms of large-scale 
tectonic earthquakes. This leads us to the assumption that in specific cases the focus zone 
of the tectonic earthquake can be modelled with the help of a system comprising four anti- 
plane shear discontinuities propagating outwards. 
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INTEGRAL FORM OF THE GENERAL SOLUTION OF EQUATIONS OF 

STEADY+-ATE THE~OE~STIC~~* 

1U.D. KOPEIKIN and V.P. SHISHKIN 

A new integral formula is obtained for solving the equation of steady- 
state thermoelasticity in a three-dimensional region, differing from the 
well-known formula /l/ in containing no volume integsal. A similar 
formula is encountered in the case of a two-dimensional region, and its 
use in constructing the integral equation for boundary value problems is 
suggested. The fact that there are no volume integrals in the integral 
equations facilitates their numerical solution. If the temperature is 
represented by Green's formula in terms of the Newtonian potentials of 
the single and double layer, and the mass force is conservative, then, 
as shown below, the volume integrals will also be transformed into 
surface integrals over the boundary surface. The resulting formula 
however is less suitable for the numerical solution of boundary value 
problems as it contains a large number of integrals with different kernels. 

1. The differential equations of equilibrium of a thermoelastic medium written in terms 
of the displacements ui(i= i, 2,s) have the form 

3 a.3 aT 
PAu~+W-~),~~,, =----K 

I -2v at, i (1.1) 

Here % and h are Lame constants, E and Y is Young's modulus and Poisson's ratio, u is the 
coefficient of linear thermal expansion and Ki is the mass force density vector. The temp- 
erature T is sought in the form of the solution of an independent boundary value problem for 
the Laplace equation, and is assumed known. We write the solution of (1.1) in the form /l/ 

'j(')" [Pi(YfUij('T Y)--rri(Y)4j(Z'21)]dSy+ S (1.2) 
S 

“ij (+t Y) = 
C3 - 4v) 'jj i %j%j au,, 
16+(1-v)r ’ ej (xv Y) = ay 

f 
1-2v 

Pijtz*YfT &((I-_v)*P "*%j-nj%i-'*jws'P- i 
3%g% j"'P 
*__2v ) 

Here z(E,.Q,xJ and #(ul.pI,ya) denote arbitrary points of the closed region 8,~~ are the 
direction cosines of the vector ri=yi--i (r is its modulus), ni are the direction cosines 
of the outward normal to the boundary S,(o is the angle between the vectorwith components 
rI and the normal, pi(g) are the stress vector components on the surface with normal {~if, &I= 

d~~d~*a~~ is the volume element of the region D,6*] is the Kronecker delta. We will write 
the Green identity for the function T and aria&Q as follows: 

(1.3) 
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